Package: easyCODA 0.40.2

easyCODA: Compositional Data Analysis in Practice

Univariate and multivariate methods for compositional data analysis, based on logratios. The package implements the approach in the book Compositional Data Analysis in Practice by Michael Greenacre (2018), where accent is given to simple pairwise logratios. Selection can be made of logratios that account for a maximum percentage of logratio variance. Various multivariate analyses of logratios are included in the package.

Authors:Michael Greenacre [aut, cre]

easyCODA_0.40.2.tar.gz
easyCODA_0.40.2.zip(r-4.5)easyCODA_0.40.2.zip(r-4.4)easyCODA_0.40.2.zip(r-4.3)
easyCODA_0.40.2.tgz(r-4.4-any)easyCODA_0.40.2.tgz(r-4.3-any)
easyCODA_0.40.2.tar.gz(r-4.5-noble)easyCODA_0.40.2.tar.gz(r-4.4-noble)
easyCODA_0.40.2.tgz(r-4.4-emscripten)easyCODA_0.40.2.tgz(r-4.3-emscripten)
easyCODA.pdf |easyCODA.html
easyCODA/json (API)

# Install 'easyCODA' in R:
install.packages('easyCODA', repos = c('https://michaelgreenacre.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/michaelgreenacre/codainpractice/issues

Datasets:
  • cups - Dataset: RomanCups
  • fish - Dataset: FishMorphology
  • time - Dataset: TimeBudget
  • veg - Dataset: Vegetables

On CRAN:

2.29 score 1 stars 49 scripts 270 downloads 4 mentions 29 exports 10 dependencies

Last updated 6 months agofrom:3a9ea3953d. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 25 2025
R-4.5-winOKJan 25 2025
R-4.5-linuxOKJan 25 2025
R-4.4-winOKJan 25 2025
R-4.4-macOKJan 25 2025
R-4.3-winOKJan 25 2025
R-4.3-macOKJan 25 2025

Exports:ACLUSTALRBARCACIplot_bivCLOSECLRDOTDUMMYFINDALRILRinvALRinvCLRinvSLRLRLR.VARLRAPCAPLOT.CAPLOT.LRAPLOT.PCAPLOT.RDAPLRRDASLRSTEPSTEPRVARWARD

Dependencies:caclusterellipselatticeMASSMatrixmgcvnlmepermutevegan