Package: easyCODA 0.40.2

easyCODA: Compositional Data Analysis in Practice

Univariate and multivariate methods for compositional data analysis, based on logratios. The package implements the approach in the book Compositional Data Analysis in Practice by Michael Greenacre (2018), where accent is given to simple pairwise logratios. Selection can be made of logratios that account for a maximum percentage of logratio variance. Various multivariate analyses of logratios are included in the package.

Authors:Michael Greenacre [aut, cre]

easyCODA_0.40.2.tar.gz
easyCODA_0.40.2.zip(r-4.5)easyCODA_0.40.2.zip(r-4.4)easyCODA_0.40.2.zip(r-4.3)
easyCODA_0.40.2.tgz(r-4.4-any)easyCODA_0.40.2.tgz(r-4.3-any)
easyCODA_0.40.2.tar.gz(r-4.5-noble)easyCODA_0.40.2.tar.gz(r-4.4-noble)
easyCODA_0.40.2.tgz(r-4.4-emscripten)easyCODA_0.40.2.tgz(r-4.3-emscripten)
easyCODA.pdf |easyCODA.html
easyCODA/json (API)

# Install 'easyCODA' in R:
install.packages('easyCODA', repos = c('https://michaelgreenacre.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/michaelgreenacre/codainpractice/issues

Datasets:
  • cups - Dataset: RomanCups
  • fish - Dataset: FishMorphology
  • time - Dataset: TimeBudget
  • veg - Dataset: Vegetables

On CRAN:

2.27 score 1 stars 47 scripts 358 downloads 4 mentions 29 exports 10 dependencies

Last updated 3 months agofrom:3a9ea3953d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:ACLUSTALRBARCACIplot_bivCLOSECLRDOTDUMMYFINDALRILRinvALRinvCLRinvSLRLRLR.VARLRAPCAPLOT.CAPLOT.LRAPLOT.PCAPLOT.RDAPLRRDASLRSTEPSTEPRVARWARD

Dependencies:caclusterellipselatticeMASSMatrixmgcvnlmepermutevegan